112 research outputs found

    Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey

    Get PDF
    International audienceThe MODerate-resolution Imaging Spectroradiometer (MODIS) snow cover product was evaluated by Parajka and Blösch (2006) over the territory of Austria. The spatial and temporal variability of the MODIS snow product classes are analyzed, the accuracy of the MODIS snow product against numerous in situ snow depth data are examined and the main factors that may influence the MODIS classification accuracy are identified in their studies. The authors of this paper would like to provide more discussion to the scientific community on the "Validation of MODIS snow cover images" when similar methodology is applied to mountainous regions covered with abundant snow but with limited number of ground survey and automated stations. Daily snow cover maps obtained from MODIS images are compared with ground observations in mountainous terrain of Turkey for the winter season of 2002?2003 and 2003?2004 during the accumulation and ablation periods of snow. Snow depth and density values are recorded to determine snow water equivalent (SWE) values at 19 points in and around the study area in Turkey. Comparison of snow maps with in situ data show good agreement with overall accuracies in between 62 to 82 percent considering a 2-day shift during cloudy days. Studies show that the snow cover extent can be used for forecasting of runoff hydrographs resulting mostly from snowmelt for a mountainous basin in Turkey. MODIS-Terra snow albedo products are also compared with ground based measurements over the ablation stage of 2004 using the automated weather operating stations (AWOS) records at fixed locations as well as from the temporally assessed measuring sites during the passage of the satellite. Temporarily assessed 20 ground measurement sites are randomly distributed around one of the AWOS stations and both MODIS and ground data were aggregated in GIS for analysis. Reduction in albedo is noticed as snow depth decreased and SWE values increased

    Recoding between two types of STM representation revealed by the dynamics of memory search

    Get PDF
    Visual STM (VSTM) is thought to be related to visual attention in several ways. Attention controls access to VSTM during memory encoding and plays a role in the maintenance of stored information by strengthening memorized content. We investigated the involvement of visual attention in recall from VSTM. In two experiments, we measured electrophysiological markers of attention in a memory search task with varying intervals between VSTM encoding and recall, and so we were able to track recoding of representations in memory. Results confirmed the involvement of attention in VSTM recall. However, the amplitude of the N2pc and N3rs components, which mark orienting of attention and search within VSTM, decreased as a function of delay. Conversely, the amplitude of the P3 and sustained posterior contralateral negativity components increased as a function of delay, effectively the opposite of the N2pc and N3rs modulations. These effects were only observed when verbal memory was not taxed. Thus, the results suggested that gradual recoding from visuospatial orienting of attention into verbal recall mechanisms takes place from short to long retention intervals. Interestingly, recall at longer delays was faster than at short delays, indicating that verbal representation is coupled with faster responses. These results extend the orienting-of-attention hypothesis by including an account of representational recoding during short-term consolidation and its consequences for recall from VSTM

    Deployment of spatial attention towards locations in memory representations: an EEG study

    Get PDF
    Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target

    Turner syndrome and associated problems in turkish children: A multicenter study

    Get PDF
    Objective: Turner syndrome (TS) is a chromosomal disorder caused by complete or partial X chromosome monosomy that manifests various clinical features depending on the karyotype and on the genetic background of affected girls. This study aimed to systematically investigate the key clinical features of TS in relationship to karyotype in a large pediatric Turkish patient population. Methods: Our retrospective study included 842 karyotype-proven TS patients aged 0-18 years who were evaluated in 35 different centers in Turkey in the years 2013-2014. Results: The most common karyotype was 45,X (50.7%), followed by 45,X/46,XX (10.8%), 46,X,i(Xq) (10.1%) and 45,X/46,X,i(Xq) (9.5%). Mean age at diagnosis was 10.2±4.4 years. The most common presenting complaints were short stature and delayed puberty. Among patients diagnosed before age one year, the ratio of karyotype 45,X was significantly higher than that of other karyotype groups. Cardiac defects (bicuspid aortic valve, coarctation of the aorta and aortic stenosi) were the most common congenital anomalies, occurring in 25% of the TS cases. This was followed by urinary system anomalies (horseshoe kidney, double collector duct system and renal rotation) detected in 16.3%. Hashimoto’s thyroiditis was found in 11.1% of patients, gastrointestinal abnormalities in 8.9%, ear nose and throat problems in 22.6%, dermatologic problems in 21.8% and osteoporosis in 15.3%. Learning difficulties and/or psychosocial problems were encountered in 39.1%. Insulin resistance and impaired fasting glucose were detected in 3.4% and 2.2%, respectively. Dyslipidemia prevalence was 11.4%. Conclusion: This comprehensive study systematically evaluated the largest group of karyotype-proven TS girls to date. The karyotype distribution, congenital anomaly and comorbidity profile closely parallel that from other countries and support the need for close medical surveillance of these complex patients throughout their lifespan. © Journal of Clinical Research in Pediatric Endocrinology

    Spreading the sparing: Against a limited-capacity account of the attentional blink.

    Get PDF
    The identification of the second of two targets presented in close succession is often impaired-a phenomenon referred to as the attentional blink. Extending earlier work (Di Lollo, Kawahara, Ghorashi, and Enns, in Psychological Research 69:191-200, 2005), the present study shows that increasing the number of targets in the stream can lead to remarkable improvements as long as there are no intervening distractors. In addition, items may even recover from an already induced blink whenever they are preceded by another target. It is shown that limited memory resources contribute to overall performance, but independent of the attentional blink. The findings argue against a limited-capacity account of the blink and suggest a strong role for attentional control processes that may be overzealously applied. © 2005 Springer-Verlag

    Super-heavy fermion material as metallic refrigerant for adiabatic demagnetization cooling

    Get PDF
    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, as the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3^3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas is being increasingly difficult due to the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. Here, we show that a new type of refrigerant, super-heavy electron metal, YbCo2_2Zn20_{20}, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. A number of advantages includes much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1x_{1-x}Scx_xCo2_2Zn20_{20} by partial Sc substitution with xx\sim0.19. The substitution induces chemical pressure which drives the materials close to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures enabling final temperatures well below 100 mK. Such performance has up to now been restricted to insulators. Since nearly a century the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for the cryogen-free refrigeration
    corecore